Stratigraphic significance of carbon isotope variations in the shallow-marine Seis/Siusi Permian–Triassic boundary section (Southern Alps, Italy)

Sonja H. Kraus*, 1, Susann Siegert1, Wolfgang Mette2, Ulrich Struck3 and Christoph Korte1

1 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany. E-mail: sonja.kraus@t-online.de
2 Institut für Geologie und Paläontologie, Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria
3 Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany

Abstract
Carbonate carbon-isotope values from the Permian–Triassic (P–T) boundary section at Seis/Siusi (Southern Alps, Italy) show a trend similar to that in numerous other P–T boundary sections worldwide. Values decrease from 3.2 ‰ (V-PDB) in the upper Bellerophon Limestone Formation (Late Permian) to a minimum of –1.7 ‰ in the lower Mazzin Member. This minimum may represent the P–T boundary. The overall declining carbon-isotope trend is interrupted by a ca. 1 ‰ positive excursion in the higher Tesero Oolite Horizon. This positive peak is located at a higher lithostratigraphic level than a comparable peak in the adjacent Pufels section, which suggests that the Tesero Oolite Horizon in the Seis section is stratigraphically slightly older than in the Pufels section, and this is also suggested by palaeomagnetic correlation. It is therefore concluded that the base of the Tesero Oolite Horizon does not reflect a synchronous “current event” but is slightly diachronous, a result that was previously shown by biostratigraphic correlation. Nevertheless, this suggestion should be verified by further detailed litho-, magneto- and chemostratigraphic analysis of other P–T sections in the Southern Alps.

Key Words
chemostratigraphy
extinction events
oolites
Pufels section
Seis section

Introduction
The most severe mass extinction of the Phanerozoic affected marine and continental biota in the latest Permian, close to the Permian–Triassic (P–T) boundary (e.g., Schindewolf 1953; Sepkoski 1989; Raup 1991; Erwin 2006; Kozur 1998a). This event was accompanied by spectacular global environmental changes, involving significant perturbations of Earth’s carbon cycle expressed as a prominent negative carbon-isotope excursion (e.g., Chen et al. 1984; Holser & Magaritz 1987; Magaritz et al. 1988; Holser et al. 1989; Oberrhäuser et al. 1989; Wang et al. 1994; Morante 1996; Wignall et al. 1998; Heydari et al. 2000; Krull & Retallack 2000; Krull et al. 2000; Twitchett et al. 2001; Musashi et al. 2001; Wit et al. 2002; Septon et al. 2002; Korte et al. 2004a, 2004b, 2004c, 2005, 2009; Thomas et al. 2004; Korte & Kozur 2005a, 2005b; Algeo et al. 2007a, 2007b; Coney et al. 2007; Riccardi et al. 2007). Because of its expression in marine and continental carbonates and in organic matter, it is generally accepted that this negative δ13C excursion is global in scale. However, what actually triggered the P–T boundary δ13C trend is still under discussion. Several possible causes, such as Siberian Trap volcanism (e.g., Renne et al. 1995; Kozur 1999a, 1999b; Svensen et al. 2004; Hansen 2006; Payne & Kump 2007; Retallack & Jahren 2008; Korte et al. 2009), re-mobilisation of formerly deposited 13C-depleted organic material due to enhanced weathering triggered by sea-level fall (e.g., Holser & Magaritz 1992), dissociation of isotopically light methane clathrates (e.g., Erwin 1994; Krull & Retallack 2000; Krull et al. 2000; Twitchett et al. 2001; Wit et al. 2002; Sarkar et al. 2003), a collapse in primary oceanic productivity (e.g., Visscher et al. 1996; Rampino & Caldeira 2005), and shallow marine anoxia resulting
from an upward rise in the chemocline or ocean overturn (Malkowski et al. 1989; Korte et al. 2004a; Kump et al. 2005; Algeo et al. 2007a, 2008) have been suggested. It is most likely that more than one trigger was responsible for the -4 to -7% negative excursion (e.g., Renne et al. 1995; Berner 2002; Korte et al. 2004a; Sephton et al. 2005). Factors that might at this time have affected the global carbon cycle and other aspects of the Earth system, are discussed extensively (e.g., Erwin et al. 2002; Benton 2003; Benton & Twitchett 2003; Kump 2003; Corsetti et al. 2005; Racki & Wignall 2005; Erwin 2006; Isozaki 2007; Twitchett 2007; Wignall 2007; Korte & Kozur 2009).

Carbon-isotope excursions, if global in scale, are detectable in marine and continental sediments and, because of the short residence times of carbon in ocean and atmosphere, can be used for stratigraphic correlation. Here, we present carbon-isotope values for the shallow-marine Permian–Triassic boundary section at Seis/Siusi (Southern Alps, Italy). We have used the carbon-isotope trend to correlate the Seis section with other P–T boundary successions of the Southern Alps and elsewhere. As a result, we propose new stratigraphic findings for the Seis section that bear on latest Permian deposition in the Dolomites.

Geological settings and stratigraphic background

Bulk carbonate samples were collected in September 2007 and June 2008 in a section about 1 km south of Seis (Siusi) village, Dolomites, Southern Alps, Italy (Fig. 1). At the end of the Permian this location was situated on an inner carbonate ramp (Noé 1987; Brandner 1988; Newton et al. 2004) at the westernmost margin of the Palaeotethys, near the equator (Fig. 2). The succession consists of dolomitic mudstones and wackestones of the upper Bellerophon Limestone Formation (Fig. 3), followed upwards by grainstones, mudstones and marls of the Werfen Formation, including the Tesero Oolite Horizon (TOH), and subsequently by mudstones of the lower Mazzin Member. The shallow water deposits are characterised by continuous and relatively high sedimentation rates compared to the classical P–T boundary sections such as S-China, Iran and Perigondwanan localities (Atudorei 1999; Yin et al. 2001; Kozur 2007). These conditions represent an excellent environment for carbonate sedimentation (Noé 1987) and make high-resolution carbon-isotope sampling possible.

The base of the Triassic is defined by the International Commission on Stratigraphy by the first appearance datum (FAD) of the conodont Hindeodus parvus (Kozur & Pjatakova, 1976). Conodonts are rare in the Late Permian and Early Triassic succession of the Southern Alps; thus, it is difficult to define biozones precisely. However, the occurrence of Hindeodus and Isarcicella allows a subdivision of the stratigraphic record into the H. praeparvus Zone, the H. parvus Zone and the I. isarcica Zone at the Pufels, Tesero and at the Gartnerkofel core locations (Perri 1991; Schönlaub 1991; Farabegoli & Perri 1998; Nicora & Perri 1999; Korte & Kozur 2005a; Korte et al. 2009).

Formerly, the P–T boundary was lithostratigraphically placed between the Bellerophon Limestone and the Werfen Beds at the base of the TOH (e.g., Leonardi...

Methods

Powders were drilled from fresh surfaces of bulk carbonates. Samples of approximately 100–400 μg were filled into clean 10 ml exetainers and sealed with a septum cap (caps and septa for LABCO extainer 438b). The remaining air was removed by flushing the extainer with

Figure 3. Seis/Siusi section, showing lithology, sample locations, and carbon isotope values for bulk carbonates.
the reacted carbonate was analysed for

13C and 18O using a pure CO2 (4.5) from a cylinder and calibrated against DELTAV isotope ratio mass spectrometer. Reference gas was measured against V-SMOW using Finnigan GASBENCH II coupled online with a Thermo Finnigan MEGA coupled with a mass spectrometer. The reproducibility of replicated standards is typically better than 0.1 ‰ (one standard deviation) for 13C and 18O. Carbon- and oxygen-isotope values were calibrated against V-PDB and are reported in the standard ‰-notation (Tab. 1).

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>δ13C vs V-PDB (%)</th>
<th>δ18O vs V-SMOW [%e]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ksei 44</td>
<td>3.16</td>
<td>27.26</td>
</tr>
<tr>
<td>Ksei 46</td>
<td>3.08</td>
<td>24.75</td>
</tr>
<tr>
<td>Ksei 47</td>
<td>2.92</td>
<td>25.55</td>
</tr>
<tr>
<td>Ksei 48</td>
<td>2.67</td>
<td>25.40</td>
</tr>
<tr>
<td>Ksei 49</td>
<td>1.44</td>
<td>23.73</td>
</tr>
<tr>
<td>Ksei 50</td>
<td>1.62</td>
<td>24.25</td>
</tr>
<tr>
<td>Ksei 51</td>
<td>1.26</td>
<td>23.46</td>
</tr>
<tr>
<td>Ksei 52</td>
<td>0.94</td>
<td>24.61</td>
</tr>
<tr>
<td>Ksei 52b</td>
<td>0.95</td>
<td>24.72</td>
</tr>
<tr>
<td>Ksei 53</td>
<td>1.42</td>
<td>26.21</td>
</tr>
<tr>
<td>Ksei 53a</td>
<td>0.93</td>
<td>24.94</td>
</tr>
<tr>
<td>Ksei 53b</td>
<td>1.43</td>
<td>25.74</td>
</tr>
<tr>
<td>Ksei 54</td>
<td>1.82</td>
<td>25.13</td>
</tr>
<tr>
<td>Ksei 54a</td>
<td>1.83</td>
<td>26.01</td>
</tr>
<tr>
<td>Ksei 54b</td>
<td>1.42</td>
<td>26.57</td>
</tr>
<tr>
<td>Ksei 54c</td>
<td>1.82</td>
<td>28.09</td>
</tr>
<tr>
<td>Ksei 55</td>
<td>1.02</td>
<td>25.24</td>
</tr>
<tr>
<td>Ksei 56</td>
<td>0.45</td>
<td>26.44</td>
</tr>
<tr>
<td>Ksei 57</td>
<td>0.55</td>
<td>25.87</td>
</tr>
<tr>
<td>Ksei 58</td>
<td>0.51</td>
<td>25.17</td>
</tr>
<tr>
<td>Ksei 59</td>
<td>0.66</td>
<td>25.90</td>
</tr>
<tr>
<td>Ksei 60</td>
<td>0.16</td>
<td>27.42</td>
</tr>
<tr>
<td>Ksei 61</td>
<td>0.29</td>
<td>25.35</td>
</tr>
<tr>
<td>Ksei 62</td>
<td>0.16</td>
<td>25.22</td>
</tr>
<tr>
<td>Ksei 63</td>
<td>–0.83</td>
<td>26.78</td>
</tr>
<tr>
<td>Ksei 64</td>
<td>–1.17</td>
<td>25.63</td>
</tr>
<tr>
<td>Ksei 65</td>
<td>–0.94</td>
<td>24.96</td>
</tr>
<tr>
<td>Ksei 66</td>
<td>–1.09</td>
<td>24.58</td>
</tr>
<tr>
<td>Ksei 67</td>
<td>–1.37</td>
<td>25.86</td>
</tr>
<tr>
<td>Ksei 68</td>
<td>–1.65</td>
<td>25.15</td>
</tr>
<tr>
<td>Ksei 69</td>
<td>–0.71</td>
<td>28.52</td>
</tr>
<tr>
<td>Ksei 70</td>
<td>–0.96</td>
<td>26.55</td>
</tr>
</tbody>
</table>

He (4.6) for 6 min at a flow of 100 μl per minute. Subsequently, about 30 l of anhydrous phosphoric acid was injected through the septum into the sealed exetainer by using a disposable syringe. The CO2 of the reacted carbonate was analysed for δ18O and δ13C on a Thermo Finnigan DELTAV isotope ratio mass spectrometer. Reference gas was measured using a pure CO2 (4.5) from a cylinder and calibrated against the V-PDB standard by using IAEA reference materials (NBS 18, NBS 19). The reproducibility of replicated standards is typically better than 0.1 ‰ (one standard deviation) for δ13C and δ18O. Carbon- and oxygen-isotope values were calibrated against V-PDB and are reported in the standard ‰-notation (Tab. 1).

Results

Carbon isotope values from homogeneous micritic carbonates in the Seis section between the latest Bellerophon Limestone Formation and the lower Mazzin Member (Fig. 3; Tab. 1) vary between 3.2 and –1.7 ‰o (V-PDB). A general trend towards lower δ13C values is discernible upward throughout the investigated section. This trend is interrupted by a short-term, positive excursion starting with an amplitude of about 1 ‰ (from 0.9 to 1.8 ‰) about 1 m above the base of the TOH. This positive excursion occurs over a stratigraphic thickness of about 1 m; the subsequent decline in δ13C values reaches a minimum of –1.7 ‰ about 14 m above the base of the TOH (sample Ksei 68). The two samples above this minimum show a slight trend towards higher δ13C values.

Discussion

The carbon-isotope data from the Seis/Siusi section show the same feature that was recently proposed as the “general P–T boundary trend” obtained from numerous P–T boundary sections worldwide (Korte et al. 2009). The decrease of δ13C values in this general trend is evident already in the Late Permian (late Changhsingian) C. bachmanni Zone, lasted several 100,000 years, and reaches a first minimum at the P–T boundary. Therefore, in the absence of conodonts, the lowest value in the δ13C curve can be utilized to define the P–T boundary (Korte & Kozur 2009; Korte et al. 2009). Thus it is possible that the minimum of –1.7 ‰ at sample Ksei 68 (~14 m above the base of the TOH) represents the P–T boundary. At the Pufels section, a similar δ13C minimum (~2.7 ‰) occurs at about 12 m above the base of the TOH (Horacek et al. 2007); this has been proposed to represent the P–T boundary minimum (Korte et al. 2009) using conodont stratigraphic ranges from Mostler (1982), Perri (1991), Farabegoli & Perri (1998), Farabegoli et al. (2007) and Kozur in Korte et al. (2009). Two factors, however, render the chemostratigraphic definition of the P–T boundary uncertain: (1) the δ13C minimum value at Pufels is more than 1 ‰ lower, and (2) the position of the minimum with respect to the base of the TOH is somewhat lower at Pufels, although a slightly higher sedimentation rate for Pufels (in comparison to Seis) can be inferred for the latest Bellerophon Limestone Formation (Brandner pers. comm. 2009). It is therefore possible that the P–T boundary at Seis lies slightly lower (or higher) than the δ13C minimum (no data available). On the other hand, it is still a matter for discussion whether the TOH is actually diachronous.

Assereto et al. (1973) assumed that the lithologic change from the Bellerophon Limestone Formation to the TOH (the previous P–T boundary in the Southern Alps) is diachronous (see also Wignall & Hallam 1992; Kozur 1994; Korte & Kozur 2005a). In contrast, Scholger et al. (2000) proposed that the boundary between the Bellerophon Limestone Formation and the TOH is an isochronous boundary sensu stricto. The new carbon-isotope values contribute to this discussion. In several P–T boundary sections, such as Meishan B (Nan & Liu 2004), Abadeh (Korte et al. 2004a), Shahrereza (Korte...
et al. 2004b), Zal (Korte et al. 2004c), Gartnertofel core (Holser et al. 1989) or Guryul Ravine (Korte et al. 2009), the latest Permian decreasing $\delta^{13}C$ trend is interrupted by a positive excursion of about 1‰ magnitude starting somewhat below or at the main extinction event (= event horizon). This short-term positive trend is also recognisable in the $\delta^{13}C$ values from Seis between samples 53a and 56 (Fig. 3). Because of this similarity we believe that this 1‰ positive carbon isotope excursion may be global in extent. This chemostratigraphic marker may therefore be excellently suited for stratigraphic correlation within the interval of interest. A comparison of the carbon isotope curves of the Seis section (this study) and at Pufels (Korte & Kozur 2005a), as well as the lithology and magnetic polarity (the later published by Scholger et al. 2000), indicates that the short-term positive excursion at Seis (Fig. 4) starts about 0.8 m above the base of the TOH (Fig. 4) at sample 53a (Fig. 3). In contrast, the same positive excursion starts at Pufels (not expressed by Gorjan et al. 2008) right after the first oolite bed about 0.2 m above the base of the TOH. These results indicate that the TOH at Seis was deposited slightly earlier than at Pufels. This finding is the more remarkable because the compared sections are less than 10 km apart from each other (Fig. 1). The result would also imply that the TOH is a regressive unit since the litho- and biofacies at the Seis section reflect a shallower water depth than the more easterly Pufels section. During this regression, the distal localities in the east were characterized by later occurrence of shallow-water oolite facies than the sections in the west, which were situated closer to the palaeocoast (Fig. 1). These suggestions confirm biostratigraphic results by Kozur (1994). However, further chemo- and magnetostratigraphic studies of southern alpine P–T boundary sections are desirable to verify these results.

It has been proposed that the oolites were not the result of a transgression or regression, but accumulated due to sudden climate and/or oceanography changes (“current event”, see Brandner 1988; Brandner et al. 2008). The marly layer about 0.3 m above the base of the TOH at Seis (Figs 4 and 5) may represent the marly layer at about 0.2 m above the base of the TOH at Pufels (Fig. 4) (Brandner pers. comm. 2009). If this is the case, the temporal difference in the deposition of the oolites between Seis and Pufels may not be resolvable because of the deposition of these beds must be contemporaneous. This explanation, however, cannot be confirmed by the carbon-isotope data because the short-term positive excursion is distinctly higher in Seis than in Pufels.

The main extinction event in the latest Permian, recognisable in several P–T boundary sections (e.g., Meishan, China: Yin et al. 2001; Abadeh, Jolfa, Shahreza, Zal, all Iran: Kozur 2007), occurs abruptly at the base of the C. meishanensis – H. praeparvus Zone, a stratigraphic level coeval with the base of the Boundary Clay. It is difficult to define this (equivalent) biostratigraphic base at the Seis section and, in addition, the Boundary Clay is not developed because of the shallow water. At the Pufels section, the biotas were seriously affected near the base of the TOH (Farabegoli et al. 2007) and the same can be observed at the Seis section. It is, however, most likely that the biota at Pufels and Seis disappeared because of the onset of high energy conditions in shallow water with formation of compact oolites at both locations. Similar facies changes also cause strong local biotic change within the Permian and Triassic. The real main extinction event was certainly not situated at the base of the TOH, but within the Werfen Beds. This can be stated because fusulinids and Permian holothurian sclerites do not occur elsewhere.

Figure 4. Lithology, carbon isotope values, and magnetic polarity (M; white: reversed interval; black: normal interval) of the Seis/Siusi and Pufels/Bula/Bulla sections in the latest Bellerophon Limestone Formation (BL Fm) and the Tesero Oolite Horizon (TOH). The carbon isotope data for Pufels originate from Korte & Kozur (2005a) and the magnetostratigraphic results (M) for both sections are from Scholger et al. (2000). Boundary between TOH and Mazzin Member: (A): Scholger et al. (2000); (B): Newton et al. (2004). This figure is available in colour online at: museum-fossilrecord.wiley-vch.de.
above the main extinction event, but are present within the TOH (Kozur 1994). The disappearance of biota near the base of the TOH at Seis and Pufels therefore does not chronostratigraphically correspond to the event horizon of the Chinese or Iran sections.

Palaeomagnetic data (Scholger et al. 2000) can also be used for correlation. These show that a short palaeomagnetic reversed interval is followed by a long normal interval that straddles the P–T boundary (Fig. 4). This polarity-change is biostratigraphically defined in other sections and occurs in the Germanic Basin (Szurlies 2004; Bachmann & Kozur 2004) somewhat below the main extinction event in the Tethys. The palaeomagnetic data of Scholger et al. (2000) for Seis and Pufels also suggest a diachronous boundary between the Bellerophon Limestone Formation and the TOH (Fig. 4). At the Seis section, the change from reversed to normal polarity occurs either within the upper TOH, distinctly above the top of the Bellerophon Limestone Formation or, maybe, even within the lower Mazzin Member (but note that Newton et al. (2004) drew the boundary between TOH and the Mazzin Member distinctly higher than Scholger et al. (2000); see Fig. 4). At the Pufels section, this change in polarity occurs close to the base of the TOH (first normal magnetised sample 5 cm above the base of the TOH). These results confirm the interpretation of the carbon-isotope values and suggest that the boundary between the Bellerophon Limestone

Figure 5. Photograph of the TOH at Seis with subdivision in logged beds. This figure is available in colour online at: museum-fossilrecord.wiley-vch.de.

Formation and the TOH is diachronous and the lower part of the TOH at Seis corresponds to the latest Bellerophon Limestone Formation at Pufels.

Conclusion

The latest Permian short-term positive carbon-isotope excursion at the Seis section is situated lithostratigraphically higher than at the adjacent Pufels section. This suggests that the Tesero Oolite Horizon in the Seis section is older than in Pufels, suggesting in turn that the Bellerophon Limestone Formation – TOH boundary is diachronous.

Acknowledgements

We acknowledge E. Kuhl (Berlin) for technical assistance, R. Brandner (Innsbruck), C. Heubeck (Berlin), S. P. Hesselbo (Oxford) and H. Mostler (Innsbruck) for discussion, and H. W. Kozur (Budapest) and P. Wignall (Leeds) for the reviews and pertinent comments. We thank the Freie Universit/C229t Berlin for contributions to financing this project and for providing the necessary facilities.

References

Kozur, H. & Pjatakova, M. 1976. Die Conodontenart Anachnithiodus parvus n. sp., eine wichtige Leitform der basalen Trias. – Ko-

