A new Middle Jurassic caddisfly (Trichoptera, Hydrobiosidae) from China

Yan Gao¹, Yunzhi Yao*, ¹, ² and Dong Ren¹

¹ Key Lab of Insect Evolution and Environmental Changes, Capital Normal University, Beijing 100048, China. E-mail: yaoyz100@gmail.com
² State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS), Nanjing 210008, China

Introduction

The order Trichoptera, so-called “hairy wings”, contains three suborders, namely Annulipalpia, Integripalpia, and Spicipalpia, with over 13,000 known extant species. The order is widely distributed around the world, except for the polar regions (Morse 2012), and has an extensive fossil record, with 37 families, 193 genera, and more than 660 species reported to date (Handlirsch 1906–1908, 1939; Meunier 1918; Martyanova 1958; Sukastcheva 1968, 1973, 1982, 1990; Erickson 1983; Novokshonov 1993; Botosaneanu 1995; Jarzembowski 1995; Novokshonov et al. 1995; Ansorge 2002; Ivanov & Sukatscheva 2002; Ivanov & Melnitsky 2005; Wichard 2007; Wichard et al. 2009, 2011). In particular, four families of Trichoptera (including nine genera and 15 species) have been documented from China (Hong 1983; Lin 1986; Ren et al. 1995; Wang et al. 2009a, 2009b; Davis et al. 2010).

Among caddisflies, the Spicipalpia consists of five extant families, namely Rhyacophilidae, Hydrobiosidae, Glossosomatidae, Hydroptilidae and Ptilocolepidae (Ross 1956; Schmid 1970; Morse 1997; Malicky 2001, 2005; Ward et al. 2004). The family Hydrobiosidae was first erected by Ulmer (1905) as a subfamily of Rhyacophilidae, and granted with family rank by Schmid (1989). The family Hydrobiosidae was first erected by Ulmer (1905) as a subfamily of Rhyacophilidae, and granted with family rank by Schmid (1989). This is a large family of approximately 50 genera (Holzenthal et al. 2007). So far, only three genera and three species of the fossil Hydrobiosidae have been reported (Table 1).

Table 1. Fossil species currently ascribed to the family Hydrobiosidae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Age</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Bullivena grandis Novokshonov, Ivanov & Sukatscheva, 1995</td>
<td>Late Jurassic</td>
<td>Gobi Altai aymak, Mongolia</td>
</tr>
<tr>
<td>2 Palaeohydrobiosis siberambra Botosaneanu & Wichard, 1983</td>
<td>Late Cretaceous</td>
<td>East Taymyr, Maimetsha River, Russia</td>
</tr>
<tr>
<td>3 Atopsyche perlucida Wichard, 2007</td>
<td>Tertiary</td>
<td>Dominican amber</td>
</tr>
<tr>
<td>4 Juraphilopotamus lubricus Wang, Zhao & Ren, 2009</td>
<td>Middle Jurassic</td>
<td>Daohugou, Inner Mongolia, China</td>
</tr>
<tr>
<td>5 Pulchercylindratus punctatus n. gen., n. sp.</td>
<td>Middle Jurassic</td>
<td>Daohugou, Inner Mongolia, China</td>
</tr>
</tbody>
</table>

* Corresponding author
Material and methods

All specimens described here were collected from the Daohugou locality (approximately Bathonian age, or slightly older, ca. 165 Ma; Wang & Ren 2009; Ren et al. 2009, 2010a, 2010b; Rasnitsyn & Zhang 2010; Zhao et al. 2011; Shi et al. 2011; Gao et al. 2012; Gu et al. 2012); Middle Jurassic, JiuLongshan Formation; Shantou Township, Ningcheng County, Inner Mongolia, China), and are housed at the Key Laboratory of Insect Evolution & Environmental Changes, Capital Normal University (CNU, Beijing, China).

Body length was measured from the head apex to the abdomen apex. Interpretation and terminology used herein follow Holzenthal et al. (2007): C, Costa; Sc, Subcosta; R, Radius; R1a and R1b, anterior and posterior branches of anterior Radius, respectively; Rs, posterior branch of R (composed of R2, R3, R4, and R5); M, media; M1 + 2, anterior branch of Media, composed on M1 and M2; M3 + 4, posterior branch of Media, composed on M3 and M4; Cu, Cubitus; Cu1, anterior branch of Cubitus (composed of Cu1a and Cu1b); Cu2, posterior branch of Cubitus; 1A, 2A, and 3A, first, second, and third branches of anal vein; the forks giving rise to R2 and R3, R4 and R5, M1 and M2, M3 and M4, CuA1, CuA2, CuA3, and CuA4, are referred to as F1, F2, F3, F4, and F5, respectively; the discoidal cell (dc) is the cell formed by the branching of Rs into R2 + 3 and R4 + 5 and is closed apically by the sectorial crossvein (s); the medial cell (mc) is formed by the branching of M into M1 + 2 and M3 + 4 and is closed apically by the median crossvein (m); anal cells delimited by 1A, 2A, and 3A.

Systematic paleontology

Order Trichoptera Kirby, 1813
Suborder Spicipalpia Weaver, 1983
Family Hydrobiosidae Ulmer, 1905

Pulchercylindratus n. gen.

Etymology. Genus name is a combination of the Latin pulcher (‘beautiful’) and cylindratus (‘cylindrical’), gender feminine.

Type species. Pulchercylindratus punctatus n. sp.

Diagnosis. Head round, distinctly narrower than pronotum. Antennae shorter than forewing, filiform, scapus and pedicelli broader than flagellomeres. Maxillary palps five-segmented in both sexes, second segment subcylindrical, all segments of subequal length. Ocelli present. Anterior setal warts and posterolateral setal warts present on the head. Prothorax narrow, a pair of pronotal setal warts visible on pronotum. Wing moderately broad and smoothly rounded distally; R1 reaching wing apex; R1 forked distally; discoidal and medial cells closed in forewings, but discoidal cell open in hind-wings; Rs stem nearly twice as long as discoidal cell; Rs and M four-branched, respectively; F1–F5 present in forewings; anal cells long. Tibial spurs: 2, 4, 4.

Remarks. The type species of the genus can be assigned to the family Hydrobiosidae by the following combination of features: antenna with stout scapus, shorter than head; maxillary palps 5-segmented, with 2nd segment as short as 1st segment or longer, both segments shorter than following ones; 4th and 5th segments as long as 3rd one, or longer, distally rounded (Fig. 2E); in forewings R1 forked at apex (reduced or simple in few Hydrobiosidae genera only); long anal cells. The discoidal cell being open or closed is not conclusive on the familial assignment of the genus, because both states can be found in the Hydrobiosidae.

Pulchercylindratus gen. nov. is characterized by the second segment of maxillary palps being subcylindrical (as opposed to globose), discoidal and medial cells closed, forewing with all F1–F5 present, and long anal cells. The new genus appears similar to the extant genus Rhyacophila Pictet, 1834 (in the family Rhyacophilidae; Fig. 4C), but it can be distinguished easily from the latter by its maxillary palps with the 2nd segments being globose (in contrast to subcylindrical), and the anal cells short (in contrast to long).

The new taxon is to be compared with known fossil Hydrobiosidae. Compared with the genus Bullivena Novokshonov et al., 1995, the new genus has no particular thickening of R, lacks the crossvein connecting R5 with M1 + 2, and has a closed discoidal cell (in contrast to an open discoidal cell). Compared with the genus Palaehydrobiosis Botosaneanu et al., 1983, the new genus has a closed discoidal cell, and F1 longer than F2 (as opposed to F1 shorter than F2). Compared with the genus Atopsyche Wichard, 2007, the new genus has maxillary palps with the terminal segment being not particularly elongate (as opposed to very elongate), a median cell open, M fork located at the first third of...
Figure 2. Photographs of Pulchercylindratus punctatus n. gen., n. sp.; A. CNU-Tri-NN2011003; B. CNU-Tri-NN2011005; C–D. CNU-Tri-NN2011004PC; E. Maxillary palps.
forewing length (as opposed to located at the forewing mid-length), and F₁ longer than F₂ (as opposed to F₁ shorter than F₂).

Pulchercylindratus punctatus n. sp.

Figures 1–3, 4A

Etymology. Name derived from the Latin *punctatus* (‘spotted’).

Locality and horizon. Daohugou Village, Shantou Township, Ningcheng County, Inner Mongolia, China (N 41°18.979′, E 119°14.318′); Jiulongshan Formation, Middle Jurassic.

Material. Holotype, ♂, CNU-Tri-NN2011003; paratypes, CNU-Tri-NN2011004PC (dorsoventrally compressed, part and counterpart), CNU-Tri-NN2011005 (laterally compressed).

Diagnosis. Two pairs of setal warts in dorsal view, anterior setal warts small and symmetrical; posterolateral setal warts prolate and obscure. Antennae with stout scapus and slender flagellomeres, many spines distributed on inner side of antennae.

Wings (Fig. 4A): forewings, Sc straight, with an oblique crossvein, reaching anterior wing margin before half of wing length; Rs forked basal to wing mid-length; stem of Rs nearly twice as long as discoidal cell; F₁ parallel to F₂; M fork located opposite the first third of forewing length; medial cell longer than discoidal cell; Cu₁ and Rs forked at the same level; Cu₂ and anal vein A₁ + 2 distinct.

Measurements (in mm). Holotype, ♂, CNU-Tri-NN2011003 (Figs 1, 2A): Body length 10.47, maximal width of body 8.24; head length 0.88, width 1.06; length antennal segments (scapus, pedicelli, flagellomeres): 0.29, 0.18, 3.88; Maxillary palp I–V: 0.12, 0.29, 0.35, 0.35, 0.41; compound eye length 0.53, 0.35; thorax length 1.35, width 1.53; forewing length 9.06, width 3.47, Sc 5.47, R₁ 6.17, Rs 3.17, R₂ + 3 0.73, R₄ + 5 1.17, M 2.83, M₁ + 2 2.13, M₃ + 4 1.13, Cu₁ 3.73, Cu₂ 5.00, 1A 1.77, 2A 1.40, 1A + 2A 0.87; dc 1.43, mc 2.23, F₁–₅ 3.83, 4.33, 3.77, 3.53, 2.80, hind-wing length 4.71, width 2.65; length fore leg: tibia 1.00, tar-

Figure 3. Juraphilopotamus lubricus Wang, Zhao & Ren 2009. A–B. specimen CNU-Tri-NN–2007001 (holotype), photograph (A) and line drawing (B); C. Maxillary palps (under ethyl alcohol).

Figure 4. Forewing line drawings. A. *Pulchercylindratus punctatus* n. gen., n. sp.; B. *Juraphilopotamus lubricus* Wang, Zhao & Ren 2009. F₁–₅ – apical forks 1–5; dc – discoidal cell; mc – median cell; C. *Rhysacophila chandleri* Denning, 1956 (based on Giersch 2002).
somevers 1–V: 0.53, 0.41, 0.35, 0.29, 0.18; abdomen length 4.24, width 1.18; ovipositor length 0.88; Paratype, CNU-Tri-NN2011004PC (dorsoventrally compressed, part and counterpart (Figs 2C, D)) body length 6.04, maximal width of body 2.55; head length 0.94, width 1.11; length antennae 3.74; Maxillary palp 1–V: 0.12, 0.29, 0.35, 0.35, 0.41; thorax length 1.19, width 1.53; forewing length 7.40, width 1.96; length fore leg: tibia 1.00, tarsomeres 1–V: 0.53, 0.41, 0.35, 0.29, 0.18; abdomen length 4.24, width 1.18; Paratype, CNU-Tri-

Discussion

Wang, Zhao & Ren (2009b) erected the species *Juraphilopotamus fabricus* based on a single specimen from the Daohugou locality, and placed it to the family Philopotamidae, based on wing venation characters. The argument proposed by Wang et al. (2009b; Fig. 3) for this assignment, based on family diagnosis in Carpenter (1992, p. 363), was ‘discoidal cell and medial cell closed’. It is worth mentioning that traditionally the wing venation characters are widely used for the taxonomy of fossil Trichoptera. However these characters can prove insufficient for family diagnoses, and should ideally be complemented by body characters (Ivanov & Melnitsky 2006; also, the polarity of wing characters was never tested).

Regarding the current case, the family Philopotamidae is characterized by 3-segmented maxillary palps in both sexes, with the 1st segment being the shortest, the 2nd one being provided with a mesodistal brush of setae, and the 5th segment long, annulate and flexible, usually at least twice as long as preceding segment (Neboiss 1991; Wiggins 2008). Reinvestigation of the material described by Wang et al. (2009b) reveals that only the basal three segments of one maxillary palp are preserved, with the 1st and 2nd segments being cylindrical and shorter than the 3rd segment (Fig. 3C). This suggests that the species does not belong to the Philopotamidae, but more likely to the family Hydrobiosidae (in which the 1st and 2nd segments cylindrical and shorter than the 3rd segment). Therefore we propose to transfer *J. fabricus* from the family Philopotamidae to the Hydrobiosidae.

As previously documented, the first appearance of the Hydrobiosidae is Late Jurassic, with *Bullivena grandis* Novokshonov et al., 1995. Ivanov & Sukatsheva (2002) also postulated a Late Jurassic origination of the family. Thanks to discovery of *Pulcherccylindratus punctatus* n. gen., n. sp., a Middle Jurassic origination can be established.

Acknowledgements

We sincerely thank the reviewers of this paper (one anonymous and Wilfried Wichard, Köln) for their improvement of our manuscript. We are also grateful to Olivier Béthoux for useful discussion, and Yingying Cui for help with photographs. This research was funded by grants from National Basic Research Program of China (973 Program) (No. 2012CB621900); Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 131021); the National Natural Science Foundation of China (No. 31071964, 41272006, 31230065); the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (No. KM201210028016); the PHR Project of Beijing Municipal Commission of Education (No. 201107120) and the State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (No.123114).

References

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim