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Detailed description of growth curve modelling 

The growth models established on pachypleurosaurs aim at a mathematical formulation on how an individual had increased its size between birth 

and death. We used these models, which describe growth at the macroscopic level in order to find estimates on important life-history traits for 

pachypleurosaur specimens (size and mass at birth, asymptotic size and mass, asymptotic age, age at which sexual maturity is reached, maximum 

growth rate). We are aware of the constraint that most of our pachypleurosaur specimens have preserved a comparative small number of growth 

marks, which is problematic in non-linear regression analysis and statistics of growth models derived. However, for many extinct taxa the growth 

record as preserved in bones is the only source of direct information on their growth and their paleobiology. Our results are no hard data and their 

interpretations are only hypotheses on extinct taxa. 

From our total sample of 31 pachypleurosaur specimens (Table 1) we first identified 17 specimens having preserved at least five growth 

marks or having preserved at least four growth marks and the outer cortex. Only these specimens were passed to growth curve modelling 

(Dactylosaurus: MB.R. 771.5, MB.R. 801.2, MB.R. 772.3, MB.R. 776.2, MB.R. 786; Anarosaurus: Wijk07-50, Wijk07-70, Wijk09-472, Wijk09-

58; aff. Neusticosaurus pusillus: SMNS 50372c, SMNS 92125; N. pusillus: PIMUZ T 4178, PIMUZ T 4211; N. edwardsii: PIMUZ phz 153, 

PIMUZ T 4758; Serpianosaurus: PIMUZ phz 119, PIMUZ T 4510). We then carried out for each of these specimens the complex model fitting 

procedure described below in order to find the statistical best growth model(s) for each of them. Our procedure is based on Griebeler et al. (2013) 

and was already improved in Klein et al. (2015) and Klein and Griebeler (2016). With our approach we aimed at the technical problem that an 

unknown number of growth marks could be missing from the inner part of a bone. An estimation of this number had finally to be done for three out 

of the 17 specimens modelled (aff. Neusticosaurus pusillus: PIMUZ T 4211; Serpianosaurus: PIMUZ phz 119, PIMUZ T 4510). For all other 

specimens there was no histological evidence that growth marks are missing in the inner part of the bone. Our approach also explicitly tackles the 

technical problem described in Myhrvold (2013), which is that the growth record has no information preserved on both growth acceleration and 

deceleration, i.e. the record covers only the exponential, quasi-linear or asymptotic phase of growth. This information on growth is needed for 



establishing a reliable sigmoidal growth model on a specimen (Myhrvold 2013, Klein et al. 2015, Klein and Griebeler 2016). This criterion was not 

passed by four out of the 17 specimens modelled as their growth record clearly covered only the quasi-linear phase of growth. Thus, we were finally 

able to establish growth model for 13 pachypleurosaur specimens (Supplementary Table S1). All models relate humerus length (cm) to age (years). 

Mass estimation is difficult in Pachypleurosauria (see Supplementary information S1), and we aimed to keep our growth models most precise. For 

details on our method used to transform a specimen’s humerus length into body mass (mass at birth, asymptotic mass, maximum growth rate) in 

order to make its life-history traits comparable to extant squamates (Fig. 4) please refer to Supplementary information 1.  

Growth acceleration and deceleration preserved in the growth record? To assess whether the growth record of a specimen covers only the 

exponential, quasi-linear or asymptotic phase of growth (Myhrvold 2013) we fitted an exponential, linear, and asymptotic equation to its 

ontogenetic growth series on humerus length (derived from the growth record preserved in the midshaft region of the bone). We therefore used the 

following equations, in which L0 is humerus length at the first growth mark (t = 0), Ldeath is humerus length preserved at the last growth mark or at 

the outer cortex, and g the growth parameter. 

Exponential growth model:    )exp()( 0 gtLtL       (1) 

Linear growth model:  gtLtL  0)(       (2) 

Asymptotic growth model: ))exp(1)(()( 00 gtLLLtL death    (3) 

 

Standard growth models applied to specimens. We also considered four standard growth models (Fitzhugh 1976) for each of the specimens. These 

were the von Bertalanffy (vBGM), Gompertz (GGM), logistic (LGM), and Chapman-Richards (CRGM) growth model. In all standard growth 

models t is a real number (time axis), L0 the initial length, Lmax the maximum length, and g the growth parameter.  



The specific formulation of the vBGM that we used is based on the Pütter-von Bertalanffy equation (von Bertalanffy 1938, 1957; Pütter 

1920). It has been successfully applied in this form to many extant reptile taxa (Halliday and Verrell 1988) including snakes, lizards (Shine and 

Charnov 1992), turtles (Frazer and Ehrhart 1985), and crocodiles (Magnusson and Sanaiotti 1995) in order to mathematically describe their 

ontogenetic growth in body size (i.e. snout-vent-length or total length). This asymptotic growth model formulated on gain in body length over 

ontogeny has no inflection point, but under a cubic transformation which is used to describe gain in body mass (Mass(t) = L(t)3) the inflection point 

is found at about 30% (=100*8/27) of asymptotic mass. 

vBGM:   )exp()()( 0maxmax gtLLLtL     (4) 

 

The GGM has been applied to describe growth in length in extant chelonians (Andrews 1982, Hailey and Coulson 1999). In this model the 

inflection point is located at about 38% (=100/e) of asymptotic length. The age at which it is seen is given by parameter i in the specific model 

formulation used by us. We used the following equation to implement the GGM. 

GGM:    )))(exp(exp()( max0 itgLLtL    (5) 

 

The LGM has been successfully used to describe growth in smaller extant reptiles (Magnusson and Sanaiotti 1995) including tortoises (Ritz et al. 

2010). This model has the inflection point at 50% of asymptotic length. The age at which the point is seen is set by parameter i in the formulation 

used by us. The following equation describes the LGM that we used in our study. 
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))(exp(1

)( max
0

itg

L
LtL


    (6)   

 



We finally considered the CRGM for each specimen. Contrary to the vBGM, GGM and LGM this model has a parameter m which sets the 

position of the inflection point on the length axis. Parameter i in our formulation is again the age at which the inflection point is observed. 

Parameters i and m enable the CRGM to generate any sigmoidal growth curve within the two extremes, a monotonic concave increase (no inflection 

point, maximum growth rate at birth) and a monotonic convex increase (no inflection point, truncated exponential model). By choosing specific 

values for parameter m, the CRGM is able to mimic the vBGM (m=2/3), the GGM (m→1, equation 6 is not defined for m = 1!), and the LGM (m = 

2) (Richards 1959). The formulation of the CRGM that we used is taken from Gaillard et al. (1997) and is based on Richards (1959), but contrary to 

the formulation used by these authors ours allows for a flexible L0.  
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Please note that our formulation of the GGM (5), and LGM (6) also allows a flexible location of the inflection point with respect to age and 

mass (as the CRGM). Note also that only under the vBGM the humerus length at age 0 (birth size) is L0 and asymptotic length equals Lmax. By 

contrast, for the GGM, LGM, and CRGM humerus length at age 0 (birth size) is L(t) evaluated at t = 0 (= L(0)) and asymptotic length is L0 + Lmax. 

Under the GGM, LGM, and CRGM parameter L0  allows for a non-zero length at t = 0 and thus it moves the respective growth curve along the 

length axis. 

The number of parameters assumed by our equation on the vBGM (4) is three, four for the GGM (5) and LGM (6), and five for the CRGM 

(7). These high model parameter numbers can become problematic in non-linear regression analysis when the number of growth marks preserved in 

a bone is comparatively small. This is the case for the pachypleurosaurs studied herein (Table 1). We therefore additionally considered for each of 

these four standard growth models simpler equations, in which we fixed different parameters to specific values (and did not fit them). Thus, a total 

of 6 equations derived from the general equation (4) implementing von Bertalanffy growth were applied to each specimen, 11 equations 



implementing Gompertz growth (equation 5), 11 equations implementing logistic growth (equation 6), and 12 equations implementing Chapman-

Richards growth (equation 7).  Thus, for each of the specimens under study we overall considered 40 equations on standard growth models (listed 

below) and also three equations enabling us to test whether not only one growth phase is preserved in its growth record (1 through 3).  

 

The 40 equations on standard growth models used to describe growth in pachypleurosaur specimens. The vBGM is parameterized by 

parameters L0, Lmax, and g (equation 4), the GGM (equation 5) and LGM (equation 6) are parameterized by parameters L0, Lmax, g and i, and the 

CRGM (equation 7) is parameterized by parameters L0, Lmax, g, i, and m. Starting with a full parameterisation of each of these four growth models 

(all model parameters are estimated during model fitting), we then stepwise reduced their numbers of parameters estimated (#parameters estimated) 

by setting specific model parameters to fixed values (they are not estimated during fitting of the equation). est. = this parameter is estimated during 

model fitting; from last gm = in the respective model equation Lmax is set to the humerus length corresponding to the last growth mark preserved in 

the growth record or (if preserved) to the outer cortex; from first gm = in the respective model equation L0 is set the humerus length corresponding 

to the first growth mark; fixed to 0 = L0 (or i) is set to 0 in the respective model equation, when parameter i is set to 0, the inflection point is 

determined by 38% asymptotic length (GGM) or 50% asymptotic length (LGM), respectively.  

 

Growth model #parameters estimated L0 Lmax g i m 

vBGM 3 est. est. est.   

 2 est. from last gm est.   

 2 from first gm est. est.   

 2 fixed to 0 est. est.   

 1 from first gm from last gm est.   

 1 fixed to 0 from last gm est.   

GGM and LGM 4 est. est. est. est.  

 3 est. from last gm est. est.  

 3 from first gm est. est. est.  

 3 fixed to 0 est. est. est.  

 2 est. from last gm est. fixed to 0  

 2 from first gm est. est. fixed to 0  

 2 fixed to 0 est. est. fixed to 0  

 2 from first gm from last gm est. est.  



 2 fixed to 0 from last gm est. est.  

 1 from first gm from last gm est. fixed to 0  

 1 fixed to 0 from last gm est. fixed to 0  

CRGM 5 est. est. est. est. est. 

 4 est. from last gm est. est. est. 

 4 from first gm est. est. est. est. 

 4 fixed to 0 est. est. est. est. 

 4 est. est. est. fixed to 0 est. 

 3 from first gm from last gm est. est. est. 

 3 fixed to 0 from last gm est. est. est. 

 3 est. from last gm est. fixed to 0 est. 

 3 from first gm est. est. fixed to 0 est. 

 3 fixed to 0 est. est. fixed to 0 est. 

 2 from first gm from last gm est. fixed to 0 est. 

 2 fixed to 0 from last gm est. fixed to 0 est. 

 

Estimation of the number of missing growth marks in the inner part of the bone. Three of the 17 pachypleurosaur specimens that we finally passed 

to growth curve modelling (N. pusillus: PIMUZ T 4178; Serpianosaurus: PIMUZ phz 119, PIMUZ T 4510) had large marrow cavities, which could 

indicate that some growth marks are missing (resorbed), and thus that the first growth mark preserved in these bones does not correspond to birth. 

Please note that the two methods estimating the number of missing growth marks that are given in Griebeler et al. (2013) are inapplicable to these 

pachypleurosaurs. Both methods presented in that paper make use of a known birth size (i.e. egg mass was used as an estimate of sauropod 

hatchling mass in Griebeler et al. 2013) in order to estimate the number of missing growth marks. The method presented herein was already 

successfully applied to the sauropterygians Simosaurus (Klein and Griebeler 2016), and Placodontia (Klein et al. 2015). To estimate how many 

growth marks could be missing in the inner part of bones (#res. gms) of these three pachypleurosaur specimens, we first applied the method from 

Sander and Klein (2005) in order to have an educated guess. Next, we considered different birth sizes and numbers of missing growth marks for 

each of the 40 equations on standard growth models in order to simultaneously estimate the number of growth marks missing in the inner part of the 



bone and birth size. To implement this manual grid search on the best number of missing growth marks and the best birth size for a specimen, we 

generated new growth series based on those preserved in the specimen’s growth record. For the number of missing growth marks we assumed one 

up to (3 * #res. gms) growth marks and stepwise increased this value by one growth mark. The lowest birth size (humerus length at birth) 

considered for our manual grid search was 0.1 which corresponds to the lowest annual increase in humerus length seen across our pachypleurosaur 

sample and the largest was the humerus length preserved at the first growth mark in the specimen’s growth record. Our increment in humerus length 

was ((humerus length at the first growth mark)  /  (3 * #res. gms)). In the following, we give an example on how our manual grid search was carried 

out in order to identify good estimates on the number of missing growth marks and birth sizes for pachypleurosaurs. 

 

Growth series preserved in the growth record of a hypothetical pachypleurosaur specimen   

number of the growth mark 1 2 3 4 5 

midshaft width (in mm) 0.6 1.0 2.3 3.0 3.2 

 

#res. gm = 1    (here arbitrary set to one, for fossils this educated guess is derived from the method of Sander and Klein 2005)   

Tested numbers of missing growth marks = {0, 1, 2, 3}    (3 = 3*1 = 3 * #res. gm) 

Humerus length at the first growth mark = 0.6   (humerus length observed at gm no. 1)  

Tested birth sizes = {0.1, 0.2, 0.4, 0.6}   (0.2 = 0.6 / 3*1 = (humerus length observed at gm no. 1)  /  3 * #res. gm) 

All growth series examined in our manual grid search in order to find the best number of missing growth marks and birth size for our hypothetical 

specimen. 

age no gm 

missing 

1 gm missing 2 gm missing 3 gm missing 

0 0.6 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6 0.1 0.2 0.4 0.6 

1 1.0 0.6 0.6 0.6 0.6         

2 2.3 1.0 1.0 1.0 1.0 0.6 0.6 0.6 0.6     



3 3.0 1.3 1.3 1.3 1.3 1.0 1.0 1.0 1.0 0.6 0.6 0.6 0.6 

4 3.2 3.0 3.0 3.0 3.0 1.3 1.3 1.3 1.3 1.0 1.0 1.0 1.0 

5  3.2 3.2 3.2 3.2 3.0 3.0 3.0 3.0 1.3 1.3 1.3 1.3 

6      3.2 3.2 3.2 3.2 3.0 3.0 3.0 3.0 

7          3.2 3.2 3.2 3.2 

  

For this hypothetical specimen, we would have finally done 520 fits on standard growth models (= 13 growth series considering different numbers 

of missing growth marks and birth sizes  *  40 different equations on standard growth models).   

Numerical model solving. All regression analyses were carried out in the free software R statistics (version 3.0.2). We applied the function “nls” 

from the nls package for model fitting. As each of our standard growth models (equation 4 through 7) has a conditional linear parameter (Ritz and 

Streibig 2008) we used the fitting algorithm “plinear” provided in the nls package to minimise residuals. This algorithm is very robust in terms of 

choosing starting values on model parameters as it is classical linear regression analysis (Ritz and Streibig 2008). Starting values must not be that 

precise as e.g. for the Gauss-Newton algorithm that the nls package provides as an alternative method (Ritz and Streibig 2008). Nevertheless, when 

the fitting algorithm on a specific model equation did not converge for a given growth series, we additionally tried some further guesses on starting 

values for model parameters to be estimated. We aimed to find more support that this equation is indeed not applicable to this growth series. Please 

note that when using the fitting algorithm “plinear” the conditional linear parameter “.lin” is additionally estimated (Ritz and Streibig 2008). Thus, 

the humerus length at the specimen’s birth (Lbirth) equals L0*.lin for the vBGM and L(0)*.lin for the GGM and LGM. Analogously, only for the 

vBGM the asymptotic humerus of the specimen (AL) equals Lmax*.lin, whereas under the GGM, LGM, and CRGM it is (L0 + Lmax)*.lin. 

 

Identification of candidate standard models. To identify biological reliable growth models from the total of equations and growth series considered 

for a specimen (e.g. the 520 equations considered for our hypothetical pachypleurosaur growth series), we first discarded those for which the fitting 

algorithm did not converge. Next, we excluded those for which model parameter estimates (including the conditional parameter .lin) did not 



significantly differ from zero and then subsequently those estimating negative birth sizes (Lbirth) or negative asymptotic sizes (AA), having an 

inflection point seen at a negative age of the individual or a negative growth parameter or a larger birth size than asymptotic size (humerus length 

shrinks with increasing age). Fortunately, for all pachypleurosaurs studied the remaining number of models was very small compared to the total 

number of standard growth model equations and growth series on numbers of missing growth marks initially tested. For these, we finally tested 

whether they also passed the statistical assumptions of a non-linear regression analysis. For testing the assumption of equal variances of residuals 

we used Levene’s test and for a test whether the residuals were normally distributed we applied the Shapiro-Wilk test (Ritz and Streibig 2008). 

Models passing all these filters were our candidate standard growth models for a given pachypleurosaur specimen. Passing statistical tests on 

statistical assumptions of non-linear regression analysis did not kick out any model for pachypleurosaurs, presumable as the respective null 

hypotheses are conservative and sample sizes were small. 

 

Selection of the best growth model(s) for a specimen from the candidate models.  

Since the identification process described before often revealed more than one candidate standard growth model for a pachypleurosaur specimen 

studied, we identified the best model(s) out of these by an AIC based approach (Burnham and Anderson 2002). For this we used the standard 

threshold AIC  10 (Burnham and Anderson 2002). First, the best model in terms of AIC (corrected for small sample sizes) was identified from 

the candidate models, and next AIC values were calculated for all other. In the case that AIC of the linear model was less than 10 compared to 

the best candidate model (Burnham and Anderson 2002), we assumed that the growth record only covers the quasi-stationary phase of growth 

(Myhrvold 2013). Please note that neither the exponential nor the asymptotic model passed our AIC  10 threshold for any pachypleurosaur 

specimens. If the AIC of the exponential model would have been less than 10 compared to the best candidate model (Burnham and Anderson 

2002), we would have assumed that the growth record covers only the exponential phase of growth (Myhrvold 2013). If the AIC of the asymptotic 

growth model would have been less than 10 compared to the best model (Burnham and Anderson 2002), this could either indicate the asymptotic 

phase of growth (Myhrvold 2013) or not. Thus, only if all other models within the AIC  10 range are sigmoidal (GGM, LGM or CRGM), i.e. not 



at least one vBGM equation was within the AIC  10 range, we would conclude that the growth record covers only the asymptotic phase of growth 

(Myhrvold 2013). Please note that the vBGM (equation 4 has no inflection point) is no special case when applying our approach to test whether a 

growth record only covers the asymptotic phase of growth to mass-based growth series. In this case, the vBGM is also sigmoidal and a better fit of 

an asymptotic model to the growth record clearly indicates the asymptotic phase of growth.  

 

Calculation of life-history traits from models. 

We calculated for each specimen five life-history traits from its best growth curves (=vBGM, GGM, or LGM models within AIC  10, Table S1): 

humerus length at birth (Lbirth, equals L0 * .lin for a vBGM and L(t) * .lin with L(t) evaluated at age t for the GGM and LGM), asymptotic humerus 

length (AL; equals Lmax * .lin for a vBGM, and equals (L0 + Lmax) * .lin for the GGM or LGM), age at which sexual maturity is reached (ASM), 

humerus length of a fully-grown individual (99% AL; 99% of asymptotic humerus length), and age at which the individual is fully grown (AA; age 

at which 99% of AL is reached). To estimate the age at which the individual reached sexual maturity from its growth curve (ASM), we assumed that 

the inflection point of the curve coincides with sexual maturation. Evidence for this concept exists in reptiles and amphibians (Kupfer et al. 2004; 

Lee and Werning 2008; Reiss 1989; Ritz et al. 2010). Under the GGM, ASM is seen at about 38% of AL, and under the LGM at 50% of AL. As our 

formulation of the vBGM (equation 4) has only an inflection point when mass is plotted against age (it is seen at 30% of asymptotic mass), we 

assumed that ASM coincides with the age at which 30% of AL is reached (Klein et al. 2015b).  

For Anarosaurus Wijk07-70 and N. edwardsii T 4758 for which a single standard growth model passed AIC  10 Lbirth, AL, ASM, 99% AL, and 

AA were derived from this curve. To find estimates on Lbirth, AL, ASM, 99% AL, and AA for specimens for which more than one growth model 

passed AIC  10 (Table S1) we did model averaging of trait values (Burnham and Anderson 2002). We therefore first estimated each of these five 

traits from all best growth curves on the specimen’s growth record. We then averaged for each of the trait these values based on the models’ 

respective Akaike weights (Burnham and Anderson 2002). 



Maximum growth rate (MGR) was also obtained from model averaging, except for Anarosaurus Wijk07-70 and N. edwardsii T 4758. We therefore 

estimated the annual mass gain seen within the year of the inflection point (ages i, and i+1), and calculated body masses from humerus length at age 

i and (i+1) for each of the best models on the specimen’s growth. 

Estimated birth to adult size ratios (LbirthtoAL) of specimens were derived from model averages of Lbirth and 99% AL, again except for Anarosaurus 

Wijk07-70 and N. edwardsii T 4758.  
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