Journal cover Journal topic
Fossil Record A palaeontological open-access journal of the Museum für Naturkunde
Journal topic

Journal metrics

Journal metrics

  • IF value: 0.783 IF 0.783
  • IF 5-year value: 1.000 IF 5-year 1.000
  • CiteScore value: 0.86 CiteScore 0.86
  • SNIP value: 0.543 SNIP 0.543
  • SJR value: 0.382 SJR 0.382
  • IPP value: 0.72 IPP 0.72
  • Scimago H index value: 12 Scimago H index 12
Volume 21, issue 2
Foss. Rec., 21, 213-221, 2018
https://doi.org/10.5194/fr-21-213-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Foss. Rec., 21, 213-221, 2018
https://doi.org/10.5194/fr-21-213-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Aug 2018

Research article | 29 Aug 2018

Marine microorganisms as amber inclusions: insights from coastal forests of New Caledonia

Alexander R. Schmidt1, Dennis Grabow1, Christina Beimforde1, Vincent Perrichot2, Jouko Rikkinen3,4, Simona Saint Martin5, Volker Thiel1, and Leyla J. Seyfullah1 Alexander R. Schmidt et al.
  • 1Department of Geobiology, University of Göttingen, Göttingen, Germany
  • 2Univ. Rennes, CNRS, Géosciences Rennes – UMR 6118, Rennes, France
  • 3Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
  • 4Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
  • 5Muséum National d'Histoire Naturelle, Département Origines et Evolution, UMR 7207 CR2P (MNHN CNRS-SU), Paris, France

Abstract. Marine microorganisms trapped in amber are extremely rare in the fossil record, and the few existing inclusions recovered so far originate from very few pieces of Cretaceous amber from France. Marine macroscopic inclusions are also very rare and were recently described from Cretaceous Burmese amber and Early Miocene Mexican amber. Whereas a coastal setting for the amber source forests is generally proposed, different scenarios have been suggested to explain how these marine inclusions can become trapped in a resin of terrestrial origin. These scenarios include an introduction of marine organisms (i) through high tides, (ii) from storms and resulting in flooding of the littoral/estuarine forest floor, (iii) in resin dropped into the sea in mangrove-type settings, or (iv) by wind and sea spray. We investigated the possibility of a wind-driven introduction of marine microorganisms into tree resins using modern coastal conifer forests with the highly resinous Cook pine (Araucaria columnaris) in New Caledonia as a model for the Cretaceous amber forests from France. By exposing fresh resin surfaces on the seaward side of the trees and the collection of older in situ resins, we confirmed that marine microorganisms can become trapped on sea-exposed resin, along with remnants from terrestrial organisms, and salt crystals. We suggest that, for cases where only a few marine inclusions are discovered in an amber deposit, an origin from aeolian background deposition is feasible. However, a more energetic but possibly still aeolian event is likely needed to explain the high numbers of marine microorganisms embedded in pieces of Cretaceous amber from France.

Publications Copernicus
Download
Short summary
Amber is fossilized resin and so has a terrestrial source; however, very rarely have marine microorganisms been reported, and only in a few amber pieces. We aim to understand how this rare phenomenon could be possible. Several different mechanisms were proposed, and we then tested the wind-blown idea via our experiments on resin-rich forests on the coast of New Caledonia. These forests encompass the best model for the Cretaceous ambers that contain these marine microorganisms.
Amber is fossilized resin and so has a terrestrial source; however, very rarely have marine...
Citation
Share